Building your own Operating System-part 3

Asitha Nuwan
10 min readAug 6, 2021

Hello everyone!

This is the third article of this series. In this article I’m going to talk about how to integrate output into our operating system.

Let’s start!

3.1 Interacting with the Hardware

There are usually two different ways to interact with the hardware,memory mapped I/O and I/O ports.

If the hardware supports memory-mapped I/O,you can write to a specific memory address and the hardware will be uploaded.

If the hardware uses I/O port,the assembly code instructions “out” and “in”must be used to communicate with it.The instructions “out”accept two parameters:the I/O port address and the data to send.The instruction “in”takes a single parameter the address of the I/O port,and retu3data from the hardware. The cursor of the framebuffer is one example of hardware controlled via I/O port.

3.2 The Framebuffer

The framebuffer is a hardware device that is capable of displaying a buffer of memory on the screen . The framebuffer has 80 columns and 25 rows, and the row and column indices start at 0 (so rows are labelled 0–24).

3. 2.1 Writing text

Writing text to the console via the framebuffer is done with memory-mapped I/O. The starting address of the memory-mapped I/O for the framebuffer is 0x000B8000 [27]. The memory is divided into 16 bit cells, where the 16 bits determine both the character, the foreground color and the background color. The highest eight bits is the ASCII [28] value of the character, bit 7–4 the background and bit 3–0 the foreground, as can be seen in the following figure:

Bit: | 15 14 13 12 11 10 9 8 | 7 6 5 4 | 3 2 1 0 |
Content: | ASCII | FG | BG |

The first cell corresponds to row zero, column zero on the console. Using an ASCII table, one can see that A corresponds to 65 or 0x41. Therefore, to write the character A with a green foreground (2) and dark grey background (8) at place (0,0), the following assembly code instruction is used:

mov [0x000B8000], 0x4128

The second cell then corresponds to row zero,column one and it’s address is therefore:

0x000B8000 + 16 = 0x000B8010

Writing to the framebuffer can also be done in C by treating the address 0x000B8000 as a char pointer, char *fb = (char *) 0x000B8000. Then, writing A at place (0,0) with green foreground and dark grey background becomes:

fb[0] = ‘A’;
fb[1] = 0x28;

The following code shows how this can be wrapped into a function:

/** fb_write_cell:
* Writes a character with the given foreground and background to position i
* in the framebuffer.
*
* @param i The location in the framebuffer
* @param c The character
* @param fg The foreground color
* @param bg The background color
*/
void fb_write_cell(unsigned int i, char c, unsigned char fg, unsigned char bg)
{
fb[i] = c;
fb[i + 1] = ((fg & 0x0F) << 4) | (bg & 0x0F)
}

The function can then be used as follows:

#define FB_GREEN 2
#define FB_DARK_GREY 8 fb_write_cell(0, ‘A’, FB_GREEN, FB_DARK_GREY);

2.2 Moving the cursor

Moving the cursor of the framebuffer is done via two different I/O ports. The “out” assembly code instruction can’t be executed directly in C. Therefore it is a good idea to wrap “out” in a function in assembly code that can be accessed from C. So, here is the code for the file called “io.s”.

global outb ; make the label outb visible outside this file

; outb — send a byte to an I/O port

; stack: [esp + 8] the data byte

; [esp + 4] the I/O port

; [esp ] return address

outb:

mov al, [esp + 8] ; move the data to be sent into the al register

mov dx, [esp + 4] ; move the address of the I/O port into the dx register

out dx, al ; send the data to the I/O port

ret ; return to the calling function

Then you need to create a header file called “io.h” in the drivers directory using this code.

#ifndef INCLUDE_IO_H

#define INCLUDE_IO_H

/** outb:

* Sends the given data to the given I/O port. Defined in io.s

*

* @param port The I/O port to send the data to

* @param data The data to send to the I/O port

*/

void outb(unsigned short port, unsigned char data);

#endif /* INCLUDE_IO_H */

Moving the cursor can now be wrapped in a C function which is located in “frame_buffer.h” file.

#include “io.h”

/* The I/O ports */

#define FB_COMMAND_PORT 0x3D4

#define FB_DATA_PORT 0x3D5

/* The I/O port commands */

#define FB_HIGH_BYTE_COMMAND 14

#define FB_LOW_BYTE_COMMAND 15

/** fb_move_cursor:

* Moves the cursor of the framebuffer to the given position

*

* @param pos The new position of the cursor

*/

void fb_move_cursor(unsigned short pos)

{

outb(FB_COMMAND_PORT, FB_HIGH_BYTE_COMMAND);

outb(FB_DATA_PORT, ((pos >> 8) & 0x00FF));

outb(FB_COMMAND_PORT, FB_LOW_BYTE_COMMAND);

outb(FB_DATA_PORT, pos & 0x00FF);

}

2.3 The Driver

The driver should provide an interface that the rest of the code in the OS will use for interacting with the framebuffer. There is no right or wrong in what functionality the interface should provide, but a suggestion is to have a write function with the following declaration:

int write(char *buf, unsigned int len);

The write function writes the contents of the buffer buf of length len to the screen. The write function should automatically advance the cursor after a character has been written and scroll the screen if necessary.

3.3 The Serial Ports

The serial port is an interface for communicating between hardware devices and although it is available on almost all motherboards, it is seldom exposed to the user in the form of a DE-9 connector nowadays.

The serial port is easy to use, and, more importantly, it can be used as a logging utility in Bochs. If a computer has support for a serial port, then it usually has support for multiple serial ports, but we will only make use of one of the ports. This is because we will only use the serial ports for logging. Furthermore, we will only use the serial ports for output, not input. The serial ports are completely controlled via I/O ports.

3.3.1Configuring the Serial Port

The first data that need to be sent to the serial port is configuration data. In order for two hardware devices to be able to talk to each other they must agree upon a couple of things. These things include:

  • The speed used for sending data (bit or baud rate)
  • If any error checking should be used for the data (parity bit, stop bits)
  • The number of bits that represent a unit of data (data bits)

3.3.2Configuring the Line

Configuring the line means to configure how data is being sent over the line. The serial port has an I/O port, the line command port, that is used for configuration.

First the speed for sending data will be set. The serial port has an internal clock that runs at 115200 Hz. Setting the speed means sending a divisor to the serial port, for example sending 2 results in a speed of 115200 / 2 = 57600 Hz.

The divisor is a 16 bit number but we can only send 8 bits at a time. We must therefore send an instruction telling the serial port to first expect the highest 8 bits, then the lowest 8 bits. This is done by sending 0x80 to the line command port. An example is shown below:

#include “io.h” /* io.h is implement in the section “Moving the cursor” */ /* The I/O ports */ /* All the I/O ports are calculated relative to the data port. This is because
* all serial ports (COM1, COM2, COM3, COM4) have their ports in the same
* order, but they start at different values.
*/ #define SERIAL_COM1_BASE 0x3F8 /* COM1 base port */ #define SERIAL_DATA_PORT(base) (base)
#define SERIAL_FIFO_COMMAND_PORT(base) (base + 2)
#define SERIAL_LINE_COMMAND_PORT(base) (base + 3)
#define SERIAL_MODEM_COMMAND_PORT(base) (base + 4)
#define SERIAL_LINE_STATUS_PORT(base) (base + 5) /* The I/O port commands */ /* SERIAL_LINE_ENABLE_DLAB:
* Tells the serial port to expect first the highest 8 bits on the data port,
* then the lowest 8 bits will follow
*/
#define SERIAL_LINE_ENABLE_DLAB 0x80 /** serial_configure_baud_rate:
* Sets the speed of the data being sent. The default speed of a serial
* port is 115200 bits/s. The argument is a divisor of that number, hence
* the resulting speed becomes (115200 / divisor) bits/s.
*
* @param com The COM port to configure
* @param divisor The divisor
*/
void serial_configure_baud_rate(unsigned short com, unsigned short divisor)
{
outb(SERIAL_LINE_COMMAND_PORT(com),
SERIAL_LINE_ENABLE_DLAB);
outb(SERIAL_DATA_PORT(com),
(divisor >> 8) & 0x00FF);
outb(SERIAL_DATA_PORT(com),
divisor & 0x00FF);
}

The way that data should be sent must be configured. This is also done via the line command port by sending a byte. The layout of the 8 bits looks like the following:

Bit: | 7 | 6 | 5 4 3 | 2 | 1 0 |
Content: | d | b | prty | s | dl |

We will use the mostly standard value 0x03 [31], meaning a length of 8 bits, no parity bit, one stop bit and break control disabled. This is sent to the line command port, as seen in the following example:

/** serial_configure_line:
* Configures the line of the given serial port. The port is set to have a
* data length of 8 bits, no parity bits, one stop bit and break control
* disabled.
*
* @param com The serial port to configure
*/
void serial_configure_line(unsigned short com)
{
/* Bit: | 7 | 6 | 5 4 3 | 2 | 1 0 |
* Content: | d | b | prty | s | dl |
* Value: | 0 | 0 | 0 0 0 | 0 | 1 1 | = 0x03
*/
outb(SERIAL_LINE_COMMAND_PORT(com), 0x03);
}

3.3.3Configuring the Buffers

When data is transmitted via the serial port it is placed in buffers, both when receiving and sending data. This way, if you send data to the serial port faster than it can send it over the wire, it will be buffered. However, if you send too much data too fast the buffer will be full and data will be lost. In other words, the buffers are FIFO queues. The FIFO queue configuration byte looks like the following figure:

Bit: | 7 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Content: | lvl | bs | r | dma | clt | clr | e |

We use the value 0xC7 = 11000111 that:

  • Enables FIFO
  • Clear both receiver and transmission FIFO queues
  • Use 14 bytes as size of queue

3.3.4Configuring the Modem

The modem control register is used for very simple hardware flow control via the Ready To Transmit (RTS) and Data Terminal Ready (DTR) pins. When configuring the serial port we want RTS and DTR to be 1, which means that we are ready to send data.

The modem configuration byte is shown in the following figure:

Bit: | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Content: | r | r | af | lb | ao2 | ao1 | rts | dtr |

We don’t need to enable interrupts, because we won’t handle any received data. Therefore we use the configuration value 0x03 = 00000011 (RTS = 1 and DTS = 1).

3.3.5Writing Data to the Serial Port

Writing data to the serial port is done via the data I/O port. However, before writing, the transmit FIFO queue has to be empty (all previous writes must have finished). The transmit FIFO queue is empty if bit 5 of the line status I/O port is equal to one.

Reading the contents of an I/O port is done via the in assembly code instruction. There is no way to use the in assembly code instruction from C, therefore it has to be wrapped (the same way as the out assembly code instruction):

global inb ; inb — returns a byte from the given I/O port
; stack: [esp + 4] The address of the I/O port
; [esp ] The return address
inb:
mov dx, [esp + 4] ; move the address of the I/O port to the dx register
in al, dx ; read a byte from the I/O port and store it in the al register
ret ; return the read byte/* in file io.h */ /** inb:
* Read a byte from an I/O port.
*
* @param port The address of the I/O port
* @return The read byte
*/
unsigned char inb(unsigned short port);

Checking if the transmit FIFO is empty can then be done from C:

#include “io.h” /** serial_is_transmit_fifo_empty:
* Checks whether the transmit FIFO queue is empty or not for the given COM
* port.
*
* @param com The COM port
* @return 0 if the transmit FIFO queue is not empty
* 1 if the transmit FIFO queue is empty
*/
int serial_is_transmit_fifo_empty(unsigned int com)
{
/* 0x20 = 0010 0000 */
return inb(SERIAL_LINE_STATUS_PORT(com)) & 0x20;
}

Writing to a serial port means spinning as long as the transmit FIFO queue isn’t empty, and then writing the data to the data I/O port.

3.3.7Configuring Bochs

To save the output from the first serial serial port the Bochs configuration file bochsrc.txt must be updated. The com1 configuration instructs Bochs how to handle first serial port:

com1: enabled=1, mode=file, dev=com1.out

The output from serial port one will now be stored in the file com1.out.

3.3.7 The Driver

I recommend that you implement a write function for the serial port similar to the write function in the driver for the framebuffer. To avoid name clashes with the write function for the framebuffer it is a good idea to name the functions fb_write and serial_write to distinguish them.

A final recommendation is that you create some way of distinguishing the severeness of the log messages, for example by prepending the messages with DEBUG, INFO or ERROR.

You have to modify kmain.c file like this

#include “frame_buffer.h”

#include “serial_port.h”

int main(){

char ptr2[] = “Welcome Asitha”;

serial_write(0x3F8, ptr2, 14);

fb_write(ptr2, 14);

}

and type output what ever you like in char ptr , I have typed “welcome Asitha”;

Thank you!!

--

--